Archive | Reflection on Lessons RSS feed for this section

Fake Ninja Fights Make Life Better

26 Jan

I haven’t written in months. I got busy. I got wimpy. I just stopped. 

Part of the pause in writing was motivated by an all school assembly that discouraged staff from blogging about anything school related. I don’t think that conversation was directed at me or my blog, but I subconsciously took it in and the next thing I knew months had passed without writing.

So much has happened between then and now, which is another reason I think I got stuck. I felt like I was supposed to catch up, and the problem with thinking that way is that it made coming back to the blog too daunting and overwhelming of a task. So I kept putting it off.  I knew I just needed to write. Anything. But I was stuck.

Then, something finally happened to get me to sit down and write again. It’s nothing amazing. Sharing it won’t close any opportunity gaps or raise any AYPs, but it may someday prevent another teacher from a bad day battling the classroom blues, and so it seems as perfect a reason as any to get out of my writing funk. So here goes…

The boys robotics team showed up to the last meeting of the season and right away two of the remaining five team members announced that they would not be able to come to the event on Saturday. (This is the event that they have known about since September. The one that their parents signed forms for agreeing to make sure their children would attend. The one that for which we have literally been preparing for about for 5 months.) On top of that news, a few of the boys showed up in complete “baggage-heavy” mode with sad faces and slumped shoulders totally unable to “leave it at the door”. It was just one of those teacher moments when you are tired and defeated and you feel like no matter what you do it will never be enough. You know? It was too much for me and too much for them. We all just looked at each other… deflated.

I then wasted a good five minutes on“blah blah blah responsibility blah teamwork blah” which I’m sure sounded alot like “Wahwahwahwahwahwahwah” and as I was talking I was reading the pained expressions on their faces and imagining their inner voices screaming “I wish she’d shut up.” “She doesn’t get it” “La la la… I’m not listening…I’m not listening”…

And  then I remembered. “Wait. I know better. I’m just letting fatigue get to me. I know that lectures about teamwork and impassioned discussions with students about responsibility in the hallway won’t really help them get any work done. Talks won’t make the kids suddenly able to come to the event or magically induce a focused work trance. They won’t make the problems that low-income school students bring in the classroom suddenly disappear. They just makes everyone unhappy and tired in the moment and who can work where unhappiness abounds, and don’t frustration and unhappiness work perfectly as another excuse not to get any work done?

And so, in a moment of desperate inspiration, I called the boys into a circle at the front of the room and I challenged them to…

A fake ninja fight. 

Yep. That’s what I did. The rules were simple. No touching anyone. You just had to amaze the team with a devastating ninja move which would ideally be accompanied by some kind of brain-breaking noise that would fill the rest of us with terror and perhaps make us kneel in awe to the mighty-ness of your ninja power.

I thought for sure this plan would backfire, the problems and frustration were too big for a silly fake ninja fight. The students’ resolve to communicate their sorrow and frustration on this particular day would surely win this round… but then, one of them stepped forward and tore into our souls with some mighty ninja fury. AND. Inspired by his courage, I demonstrated my fiercest move… “the tear-the- heart-out-take-a-taste-spit-it-out-on-the-floor-and-squish-it” move. AND SO. The next boy hurled a ninja throwing star directly at me which sent me sailing to the floor clutching the point of entry in my wounded chest. KABLAM. Which was followed by another student’s best slow-motion spin kick with accompanying slow-mo audio “Hiiiiiiiii—-yaaaaaaaaaahhhhh”.

And then we were laughing.

And then we were working. 

I don’t know what inspired this particular course of action in this particular moment of my teaching career. It wasn’t in any lesson plan and I’d never done it before with students. I do sometimes make my husband laugh with my super stylin’ ninja moves when I need to express my frustration at the world, and I did fight my three-year-old “nephew” from Uruguay in a fake ninja fight at my wedding…

But I don’t know why today I decided this was something to do in a classroom in front of human beings that function outside my normal circle of weirdos and family. All I know, if you don’t mind my saying so… is that it was kind of a genius move on my part. It fixed everything, well… at least long enough for the boys to get some work done.

I know. It didn’t solve their larger life problems. It didn’t solve mine either. But it helped us to stop, to breathe, to play, to connect, to reset and blow off some steam and then, to get back to the work we needed to get done.

It felt great to let the boys be boys for a moment and I think they enjoyed and needed the opportunity to do so.

If you have the right classroom environment and the right group of kids (because we all know fake ninja fights might not be the best plan in every classroom), give it a try sometime. You can borrow my secret move if you want. Just remember. The key to making it especially awesome is the part where you taste the heart, right before throwing it to the ground and squishing it.

😉

Advertisements

Making School Work for Students

7 Oct

In my last post, I mentioned the disappointment I experienced when only three of the nine girls I recruited for the after school FLL program decided to join the club. My disappointment was compounded when, after speaking to the entire middle school, only three boys signed up for the program.

It didn’t make sense. My presentation went well. The kids were actively listening. They were clearly interested. They appeared super curious, so I couldn’t understand why, after such a positive reception, there were only three names on the club sign-up sheet.

Staring down at the empty spaces on the sheet, I felt defeated. Quite honestly… I felt a little embarrassed too. I had been pushing this robotics club for two years; I had not only registered two FLL teams for the season, but I had also agreed to collaborate with the University of Pennsylvania to host an FLL Qualifying Event. What was I going to say to them… “I know we agreed to host the FLL event, but as it turns out I’m completely useless when it comes to recruiting students for after school clubs.” Ugh. My stomach hurt.

I gave myself a few hours to just be disappointed and to get to the point where I could “accept what is so”. I pulled it together and started to think through the situation. I knew there were students who wanted this club on campus. They had been asking for it. So where were they now?

Obviously, I was doing something wrong. There was something about what I was offering that didn’t work for the students.

Continue reading

Why STEM? An idealist rant from my inner hippie voice.

4 Sep

Tonight after reading a post by Kim Crawford, titled “Don’t Forget to Show Them Who You Really Are” I started to think about how I present myself in this blog. By nature, I do not struggle with vulnerability. Unlike Kim, I’m more likely to need to build a few walls then take them down. But her post got me thinking. Do I ever really share the part of me that is a peace-loving, wildly idealistic optimist that just wants the world to stop making itself so sick, or do I keep that part of me hidden so as not to come off as an “anti-intellectual”?

So, I’ve decided to share my completely self-serving idealist hippie reasons for pushing STEM in schools. I’m going to try not to self-censor or over edit. If it’s a little jumbled, please be gentle. 

In the media and the white papers, improving STEM curriculum in schools is promoted as the means by which we will ensure our national security and create the pipeline of skilled, technical workers that will be needed to keep our high-tech world running and progressing. While I don’t undervalue the importance national security or a skilled work force, these are not my motivators for pushing STEM in schools.

My desire to see STEM improve in schools is based in my desire to help students develop the skills I believe they will need in order to create the world I want to live in and that they will have to live in. What can I say, it’s sounds cheesy when I say it out loud, but there it is, my reason for pushing STEM in schools. 

I want to live in a world where, when a problem or obstacle presents itself, people attempt to solve it, and don’t immediately look to someone else to fix it or blame someone else when it doen’s get fixed. I want to live where people from every race, sex, religion, and age can empathize with one another and collaborate to create positive change.  I want to live in a world where people who think about their actions and the impact their actions will have on others drive innovation and progress. I’m not naive. It won’t happen in my lifetime, but I can still want it and I can still take steps to try to make it happen.

I sometimes judge myself harshly. I should be championing the efforts to keep music, art and physical fitness in schools. They are equally important and they are the reason I stayed in school. I guess I see the current focus on getting STEM into schools as an opportunity to keep these activities from disappearing altogether for now. Art with an emphasis on applied math and technology. You can can make that happen. Physical activity with an emphasis on applied physics, technology and engineering. You can make that happen. With STEM as the buzzword of the moment, you can say, “Don’t worry! It’s not an art lesson, it’s a STEM lesson” and no one will question.

I’m technically an advocate for SHTEMPALM… but that sounds a little silly, right?

I’m getting a little punchy and it’s a little late, so before I back out and save this as a draft that never gets posted, I think it’s time to sum it up. 

I want to make sure that students engage in problem-solving and critical thinking especially around issues that are relevant in their lives. I want them to think about problems and to work together to find and design solutions. I want them to have the information and the skill sets they need to make their solutions realities. I want them to learn to fail with grace and to bask in the intrinsic joy that comes with success. I want them to build a beautiful world for themselves.

Peace. 😉

ISTE 2011 LEGO Workshops (Post 1 of 2)

15 Jul

I’ve been wanting to post my notes from the LEGO workshops I attended at ISTE 2011, but I’ve been procrastinating. I need to post them so that I can make room in my brain for some new ideas. So here goes!

ISTE 2011 Post #1: Notes from Sunday June 26, 2011…

Introduction to Classroom Robotics: Computer Science in Motion!

The workshop room was full of people seated behind workstations. Each workstation had a LEGO NXT kit, a pre-built Domabot with a few sensors attached, and a computer with NXT-G software.

Our presenter was Christopher Michaud, a Music Teacher at  Nebo Elementary School in Dallas, Georgia, and a graduate from Temple University’s Music program. (Woot! Philadelphia in the house.) He taught himself to program, and now in addition to teaching music, he teaches a computer science curriculum for grades 3-5. He focuses mainly on Open Office/ Alice/ Python/ and Robotics and has a terrific website with loads of great resources. (I couldn’t help but secretly love the fact that his background is in music, since my undergrad was a music technology degree. music + math + curiosity = awesome life!)

Chris started the workshop with a Powerpoint presentation in which he provided us with a brief overview of his goals for the workshop: Build, Program, Experiment, Apply, and listed a few of his reasons for teaching robotics at the elementary level, including my favorite, “Robots are cool.”  (He has headier reasons listed in the presentation that will make for stronger plugs when trying to sell a robotics program to your administration, so  I encourage you to check it out.)

The remainder of the Powerpoint presentation was a bit of NXT Robotics 101, which sensors did what and the like, and was a perfect introduction to NXT robotics.

Within just a few minutes of starting the first workshop activity, getting the domabot to drive in a square, I, and the woman next to me, realized that this was perhaps a true beginners workshop. (As in, many people in the room had never even touched an NXT kit before. I guess it’s time for me to bump my status up to advanced beginner.) My partner was open to going off script to explore some of the features of NXT-G that we were curious about and so we started messing about, clicking on buttons and pulling down menus.

Chris came over and asked how we were doing. We confessed and told him we had gone rogue.

Lucky for us, he was not at all offended and was an excellent differentiator of instruction and he immediately found us a task that would both challenge us and highlight a few new features of the software that we were not familiar with. We worked on “Simple Pi Challenge 1” and “Simple Pi Challenge 2”,  two worksheets which not only provided us with an excellent opportunity to practice writing formulas within the NXT-G software, but which also gave us great take-away lesson to use in the classroom. It provides a perfect opportunity for students to see “Pi in action”.

Once we had worked our way through that challenge, we quickly discussed what else we’d like to get out of the remaining time.

We both admitted that we had no idea how to use… DATA WIRES.

Yep. It’s true. I’ve been avoiding them. I don’t why. I think it’s because I learn so many things just by messing around or through trial and error. But when I approached data wires in this manner… there was a whole lot of “error” at the end of every “trial”. Chris was great, and he broke datawires down for us and helped make them seem at least approachable. (I’ll try to post a simple example of the use of datawires at some point for anyone else who is hesitating on getting a handle on them. Or maybe someone has a great intro resource they could suggest…)

Here are few helpful suggestions Chris made for teachers who are about to take on robotics…

1. Start with a robot built. “Kids understand build. Programming is more difficult.” The domabot is great example of a robot you can easily have ready for students to work with.

2 .Organize the room with computers on the perimeter and workspace in the middle. Have a place  in the room where it is possible to have students with empty hands.

Here’s some new vocabulary for neophyte robot programmers:

Swing turn: 1 wheel turns 1 wheel doesn’t. (Think “pivot” on a basketball court.)

Point turn: 1 wheel turns forward, the other goes in reverse. (Think… I don’t know… any ideas?)

To be honest. That’s all I got for you. Those are my notes. I know. Not very impressive. Which might be why I was procrastinating. But at least there out of my head and on the page. 😉

Thanks Chris! I finally learned to use variables, custom blocks, data wires, and the formula review in NXT-G. It’s about time. My students better get ready… next year will be a whole new ball game!

LEGO WeDo Vehicle Challenge: Using WeDo kits with older students

20 Jun

The LEGO WeDo kit is designed and marketed for early elementary children. It’s so basic that even a first grader can use it, but be careful not to write this kit off as a “just-for-the-little-kids” kit too quickly.

This year, one of my favorite mini-lessons with the 7-9th grade students in the after school STEM club was this “WeDo Vehicle Challenge”:

Design a WeDo vehicle that has either 2, 3, or 4 wheels. Use only the pieces in the Wedo kit. The vehicle does not need to have steering, but it must be able to drive forward and in reverse. Innovation is encouraged. You have two class periods (1 hour each). We’ll present at the end of the second.

The kids usually take a look at the WeDo kit and presume the challenge will not be much of a challenge. Once the students get started, it isn’t long at all before they realize what makes it challenging; there is only one motor, the motor is fairly heavy relative to the parts, and that the axle sticks straight out of the center of the motor. Hmmm….

I’m guessing the challenge is probably easier for students that have prior experience working with LEGO kits and robotics; I’m not sure. (Let me know if you try it.) All my students were new to working with the NXT kits when I tried the WeDo lesson. I wanted to see how they worked when asked to think out of the box and to be creative. Following a blueprint is great for developing spatial skills and following instructions, but it doesn’t necessarily foster innovative thinking.  I found that forcing the students to work with the limited parts of the WeDo kit encouraged them to be persistent, to attempt multiple solutions, to redesign and improve, and to work together.

I’m curious if other teachers and after-school educators have tried using the WeDo kits with older students? Let me know!

Here are a few examples of our WeDo vehicle designs if you are curious… (The kids filmed the clips.)

Taking Damien Kee’s NXT “Mexican Wave Activity” for a Test Drive

16 Jun

In my last post about the Tufts LEGO Engineering Symposium, I mentioned Damien Kee‘s  presentation and included an embedded  video of his NXT “Mexican Wave” activity.

Yesterday morning, I tried the activity with a group of 21 fifth graders that had never worked with robotics before and it was a blast! It was the perfect activity for introducing the kids to the NXT robots and the NXT-G software.

We met from 9:30-12:15 and took a 15 minute snack break, so all told, we had about 2.5 hours to try to meet the following three objectives:

1) Work collaboratively in small groups to program the NXT Domabot to move from one specified location to another. Time permitting, write a program to turn the robot around and have it return to it’s starting position.

2) Gain a basic understanding of what sensors and thresholds are and find out how they apply to today’s activity.

3)Work collaboratively as a class to program all five NXT Domabots to do a wave and at least one additional choreographed movement.

Students collaborated well and worked hard and met all three objectives by lunch!

After reviewing the objectives, we warmed up with a five minute activity called “Computer Says”. (The activity is similar to Simon Says. I am the computer; students are the robots. Robots should only follow programs that start with “Computer says”) Students made three lines and faced me.

For Round 1, I said, “First we’ll learn use a motor block to run simple programs. Let’s try a few.” I then led them through a few simple commands,  “Computer says take one step forward.”  “Computer says take one step back”.

In Round 2, I said, “Next we’ll learn to use a “wait-for-sensor block and write slightly more complex programs.” I then gave a few commands like these: “Computer says wait until you hear me clap, then take one step forward. Computer says, wait until I shout loudly and then jump”

And finally for Round 3, I said, “For our third objective, we will have to collaborate to write a series of programs to get our robots to work together to create a movement wave. Let’s try to run three programs at once and see what happens. Computer says, Line 1 robots, wait until I clap then put both hands in the air and back down again. Line 2 robots, wait until I clap, then wait one second, then put both hands in the air and back down again.  Line 3 robots, wait until I clap, then wait two seconds, then then put both hands in the air and back down again.” I clapped my hands and watched as the students did a perfect mini-Mexican-wave!

The whole activity took less than 5-minutes, but it helped to build a context for what came next. Being able to refer back to the warm-up came in especially handy when we started thinking about how to program the robots to do a wave.

After our warm-up, students then learned to move their robots using a single motor block. As recommended by Damien in his presentation, I placed two lines of tape on the floor at a random distance from each other and then students worked to program their robots to start with wheels on the first line and stop with wheels on the second line. They set to work trying different motor on durations and very quickly developed an appreciation for the decimal point! If 5 rotations were too many, they tried 4, then 4.5, 4.6, 4.7…

They began to see that trial and error and persistence were important for solving this problem, and they experienced the intrinsic joy that came along with finding an exact solution to a problem.

Soon all groups had mastered the line-to-line challenge and were on to trying to figure out how to turn the robot around and bring it home. Despite my having mentioned that changing the “degree” parameter of the motor block to 180° would not turn their robot around, all the groups tried that strategy first, which led to a series of great teachable moments surrounding what “rotation” meant in the motor block. After some experimentation with the remaining parameters in the motor block, groups soon started to catch on that the steering parameter in combination with the duration setting was the ticket to that 180° turn. At least two of the five groups got the turn close to an exact 180° turn, and the remaining groups were well on their way before I cut them off and moved on to objective 2.

Once the kids had a general sense of how to move their robots and turn them, we regrouped and I introduced them to the sound sensor and to the threshold parameter.

As I usually do when explaining threshold to kids, I said, “I bet you already know what threshold means. Let me show you. Listen to my voice and when I reach your threshold between soft and loud, clap.”

I then talk very quietly and get progressively louder until they clap. I repeat and set the threshold for “really loud”. I do a few more examples of simple thresholds they understand. For example, their threshold for drinking hot liquids. I quickly made the correlation to the threshold parameter on the  sensor block. Students seemed confident they understood the wait-for-sound block and so we moved directly on to discuss how to create a wave.

To plan the wave, we created a chart on the wall that sketched what each group needed to do and then parted. We met back up about five minutes later.

On the kids’ first try, the robots took off and executed a perfect little wave. Wow! We had thirty minutes left to add a choreographed movement of our choice. We lined up 5 students to represent the five robots and planned our dance move. Groups ran off in all directions to program. Shortly after we met back up, pushed run, waited for the signal and yelled “Go” What came next was…

Terrible. Our little robots were all over the place. And so we began to learn about collaborative trouble-shooting. We came back to the line over and over again, each time it got better, but something wouldn’t be quite right.

With one minute left and groups scrambling to download their last attempts, I called them back to the line. The room was quiet. Thumbs went up to signal all programs were running. Their classroom teacher quietly counted “1-2-3” and then the kids yelled “Go!” one last time. You can see for yourself the fruits of their efforts in our video. The simple sequence of movements won’t blow your mind… but the kids’ cheers and screams of enthusiasm may brighten your day. 

Thoughts on the LEGO Engineering Symposium

27 May

I’m sitting here on the floor at Boston’s Logan Airport, waiting to fly back to Philadelphia after spending 2.5 days at the LEGO Engineering Symposium at Tufts University in Boston, MA. It feels like a perfect time to get back to blogging. (I took a little break from blogging to focus on my wedding this past Saturday.) 

We covered so much and discussed so many topics over the course of the past two days, it’s hard to where to start or what to share so I’ll focus on the topics that were most relevant to the work I’ve been doing at the elementary level.

ELEMENTARY ROBOTICS AND STEM: The symposium provided a perfect venue for educators and researchers who are developing and implementing K-6 STEM lessons and curriculum to connect to share, and to gather and exchange ideas. Below is a quick review of a few of the topics we explored.

  • Listen Attentively: David Hammer and Kristin Wendell led a terrific workshop titled “Seeing the Science and Engineering in Children’s Thinking” during which they encouraged us as educators to be mindful and attentive when listening to children who are expressing ideas and communicating  thoughts about science and engineering. Instead of getting lost listening for the “right answers” or for content buzzwords, we need to listen for expressions of  authentic ideas and for evidence of scientific or engineering-oriented thinking, and then, in those moments, we need to validate and acknowledge the expression of the idea. David Hammer and Emily van Zee have published on the topic in their book “Seeing the Science in Children’s Thinking”. 
    .
  • Connect to Literature: In the workshop, “Engineering & Literacy”, we were introduced the idea that the books that teachers and students are currently reading in their classroom can drive the exploration of engineering problems. As characters encounter problems in the literature, students can be encouraged to engineer solutions to the problems. During the workshop, we worked together to construct a device to keep Peter’s turtle safe from Fudge (Tales of a Fourth Grade Nothing), and another to get Ralf S. Mouseand his motorcycle out of the garbage can.

    I love the  idea of having students track character problems as they read and later decide which problems to solve. By engineering solutions to character problems students are given an additional entry point for exploring and re-contextualizing what is happening in the books they are reading. Once a solution is engineered, the options for tying back to literacy are numerous. Students can design a poster to advertise their solution using persuasive and descriptive language; they can re-write the ending of the chapter or story based on the solution they designed; they can create a how-to guide for the character or for their peers explaining how to construct their solution..

  • Design Challenges: John Heffernan gave a presentation on some of the cool work he’s been doing with his students in K-6 using the LEGO WeDo kits. I especially like that he develops robotics curriculum around specific “design challenges” and themes. (i.e. each student pair creates a carnival ride to build an amusement park.)
    .
  • Allow for Diverse Representations of Ideas: There was significant discussion regarding the importance of providing elementary students multiple opportunities and a variety of means to represent their ideas and knowledge which stemmed from a presentation by Brian Gravel titled “Diverse Trajectories: Students’ Multiple Representations and Varying Ways of Developing Understandings”. A student who struggles to articulate a scientific or engineering-based thought with words, may be able to use gestures, drawings, models, demonstrations, images or video to represent his or her idea.  One of the development labs at the symposium taught teachers how to use a simple Stop-action movie software developed at Tufts CEEO called SAM (Stop Action Movies) to provide students opportunities to represent their ideas using stop motion films. The SAM software is extremely user-friendly and affordable. More information on SAM and a free trial is available on their site.
    .
  • Get All Kids Involved: The topic of whether or not robotics curriculum and LEGO kits needed to be designed to appeal specifically to girls came up during a few different presentations. Opinions were mixed. A few seemed insistent that making LEGO robotics kits and STEM activities more “girly” or “more appealing to girls” was the best way to increase female interest in STEM curriculum and robotics. Others, myself included, felt it was less important what the kits and materials looked like, and more important that students are exposed to female role models who are knowledgeable and excited about technology, engineering and science. In a side conversation, a few of us later discussed the fact that girls might be more inclined to get involves in STEM activities if they grow up with a family member who works in a STEM field.
    .
    Liz Gundersen & Sandy Jones presented some of the work they have been doing with girls in an after school “Girl-Tech” program”. As a woman who was never much of a “girly girl” as a kid, I did not necessarily appreciate a few of their blanket statements regarding what is and is not appealing to girls when it comes to STEM. I did, however, absolutely appreciate the way they combined creative arts and literature with robotics and technology. One of the projects they shared featured representations of mythological characters automated by electronic and robotic components. As far as I could tell, all of the projects I saw them present would be great for boys and girls alike! Very cool stuff.
  • Don’t Be Afraid to Jump In: In his presentation titled “It’s not Rocket Science”, Damien Kee  demonstrated a variety of activities teachers can do in their classrooms using only the “move” block in NXT-G along with a few assembled NXT driving bases. One of the videos he shared showed a series of NXT bases all programmed by the kids to do a synchronized wave.
    .
    Vodpod videos no longer available.<br>

    He made the point that even with minimal experience and long before developing any type of serious expertise, teachers can begin using and experiencing the benefits of LEGO robotics in their classroom. His  message reminded me a little of one I’ve been sharing in posts like “Let go…you don’t need to know everything” and “Just do it.” We can’t expect to know it all before we give it a shot. I mean, I’m sure we’d all love to go back to school to get those mechanical engineering degrees we forgot to get, but who has the time or money? 😉 I guess we’ll just have to do our best and count on each other to get to where we’re going.
Overall, an amazing experience! I’m already excited for next year.
%d bloggers like this: